MATEMÁGICAS

MATEMÁGICAS
Como se tornar um matemágico de sucesso.

NÚMEROS

NÚMEROS
Conheça o maravilhoso universo dos números

DESAFIOS

DESAFIOS
Encontre e descubra aqui o seu nível de desafio

RECREIO

RECREIO
Matemática no recreio tem tudo a ver. Divirta-se!

Seguidores

terça-feira, 31 de maio de 2011

10000 VISUALIZAÇÕES NO BLOG E COMPLEMENTAÇÃO PARA... "MATE MÁGICA NA ÁREA"!!!!!

10000 visualizações no blog!!!!! Oi pessoal, estou de volta!!!!!
Olá, meus amigos! Caros leitores do “matemágicas e números”!
Muito obrigado, por prestigiarem esse meu espaço que mesmo com esse contratempo que ocorreu
com o meu equipamento, não deixaram de me dar o apoio moral e psicológico e... me premiaram
na minha volta, com nada mais do que... 10000 visitas por aqui. Lamento que, somente na tarde
 de hoje (31/05/2011) é que tenha conseguido recuperar o meu bravo PC, mas... pensando como
 reiniciar as postagens devidas e qual seria uma que servisse para coroar todas essas comemorações,
 me ocorreu a ideia de usar a postagem de meu amigo e parceiro... Kleber Kilhian, que
publicou recentemente... 



 http://obaricentrodamente.blogspot.com/2011/05/regra-de-sinais-segundo-diofanto.html então, ao fazer
 esse comentário em seu blog...

Olá, Kleber!
Parceiro, meus parabéns! Essa... foi na mosca, para matar a questão da "regra dos sinais" para os
 não deficientes visuais... rsrsrsrs, através de algo palpável e convincente! Que coisa, os "velhinhos" 
do passado sabiam das coisas e... sabe daquela minha redescoberta sobre: como calcular a 
área de polígonos apenas usando os pontos do vértices deles (mate mágica na área)? Pois é, e vejo 
que tem explicação através dessa demonstração geométrica.
Um abraço!!!!!
17/05/2011 07:43:00

Bem, eu me referia à minha postagem com o título... “MATE MÀGICA NA ÁREA” que publiquei aqui

 onde na dúvida se se trataria de uma descoberta na geometria (levantamento da área de um polígono
 e/ou terreno usando-se apenas os pontos dos seus vértices) ou de uma redescoberta, pude constatar
 que de fato, era uma redescoberta pois no blog http://mathworld.wolfram.com/PolygonArea.html
 já havia uma postagem com o processo que eu redescobri o que é... lamentável, mas é uma realidade
 e de certo modo... bom bom, não digo que foi, mas também... mau mau, é claro que não, nem para
mim e nem para um sem número de pessoas que ficaram sabendo que esse método tem uma ótima
aplicação prática no levantamento de áreas poligonais e o método estava... como diria, adormecido!
Com relação ao meu comentário, o meu amigo Kleber me escreveu...

Valdir,
Você havia deixado um comentário no artigo sobre a regra dos sinais, segundo diofanto... como
 exatamente se dá a relação com este post seu?

Um abraço.
19 de maio de 2011 17:00

Assim, para atender ao pedido do amigo, eu achei melhor utilizar umas ilustrações na explicação da
 minha “teoria” dos sinais quando utilização do método reinventado e que eu observava que, de certo
 modo, era isso também, o que ocorria com a regra dos sinais, segundo Diofanto, que a postagem
 dele tratava. Por fim... aproveitando o embalo, eu tratei de explicar com mais detalhes, como se deu
 aquela minha redescoberta sobre essas áreas poligonais e para isso, fiz várias figuras sobre como
cheguei ao método. Então, meus caríssimos leitores, brindando-os com o que penso que, no momento,
 possa também homenageá-los, em agradecimento por tantos elogios recebidos sobre esses meu
trabalhos, tanto apoio e incentivos... é que resolvo também, trazer para vocês
essa... “COMPLEMENTAÇÃO” daquele meu post sobre... “MATEMÁGICA NA ÁREA” e
a minha observação sobre a regra dos sinais na postagem do amigo Kleber. Espero que gostem!

Aplicação do método redescoberto por mim, onde tabelamos os pontos (X,Y) dos vértices de um
 polígono, seguindo o sentido horário (sinal negativo) e sem nos preocuparmos com a 
sua forma, descobrimos a sua área através da soma algébrica dos produtos, obtidos por
 multiplicação cruzada, como podemos observar na figura abaixo:
  



Produtos X*Y (base em X e altura em Y) ==> sinal (+)







Produtos Y*X (base em Y e altura em X) ==> sinal (-)







Escrevi para Kleber, o seguinte e-mail:

Olá, Kleber!
Viu aí? É o seguinte: sabemos que o produto vetorial nos permite
encontrar as áreas de triângulos e/ou retângulos. Tem tbm aquela
implicação do resultado dele ser positivo (orientação do eixo X para o
eixo Y , o sinal é positivo) ou negativo ( orientação de Y para X, sinal
negativo) dependendo da orientação do rebatimento sobre os eixos
coordenados. Usamos na trigonometria, sinalizar tbm, com o sinal
positivo (+) um giro produzido no sentido anti-horário, enquanto que...
o giro no sentido horário será considerado negativo (-). Bom, unindo
essa disposições de sinais todas, mais a regra dos sinais, própriamente
dita, puxo então... a brasa para as minhas sardinhas... KKKKKKKKKKK! A
imagem retira as dúvidas?

Aquelas outras imagens, aproveitando a sua pesquisa no post da "mate
mágica na área", eu fiz para lhe mostrar, como foi que se deu a minha
"redescoberta".
Foi a partir de diagramas como esse, que geométricamente verificando que
a área de um polígono (comecei com triângulo) era menos varrida no
gráfico quando se procurava delimitar as áreas... X * Y e tbm... Y * X e
pq isso acontecia?
1º) desconfiei que a triangulação de terrenos, segundos os eixos,
tomamos medidas em X e em Y , fazemos o produto delas e dividimos o
resultado por 2.
2º) Mas aí, verifiquei que: os produtos diretos de cada abscissa pela
sua ordenada não dava certo.
3º ) Olhando para as figuras traçadas no gráfico, vislumbrei a saída
de ser um produto cruzado entre a abscissa de um ponto pela ordenada do
próximo, isso no sentido de X par Y e juntando-se aos produtos de Y para
X , mesmo assim não chegava ao resultado esperado. Depois de várias
tentativas, veio aquela de fechar o circuito de pontos, lançando o 1º lá
no final da tabela.
4º) Depois, considerei o sentido horário e descobri que a soma dos
produtos de Y para X devia ser positiva e a soma dos produtos de X para
Y seriam negativas, cuja soma algébrica, resultava no dobro da área
procurada.
5º) Essa área qd dividida por 2, claro... dava a área da figura
poligonal pesquisada.
6º) Tudo muito bom, tudo muito bem? Pensei... Área de polígonos, um
assunto desde as eras remotas, vem sendo estudadas por um... sem número
de civilizações! Será que isto é uma descoberta inédita na área? Corre o
risco de... não ser! Sabe, é melhor ter um pouco de cautela em anunciar
em alto e bom som... que eu inventei esse método! E aí, foi bom ter
agido dessa maneira, pois o resto da história vc já conhece.
Bem, meu amigo... qualquer coisa não bem explicada, pode me pedir que
com certeza, estarei à sua disposição, para lhe atender!
Tudo de bom, pra vc e a sua família, muita saúde e sucessos!
Um abraço!!!!!
a) Francisco Valdir de Lima.

Depois recebi deste,  a  seguinte resposta:

Olá Valdir,
Primeiramente, agradeço por sua resposta com todo seu empenho em preparar o
texto e as figuras! Realmente foi uma ótima sacada o que você fez. Como
idéias simples resolvem problemas grandes! Devo confessar que com estas
explicações que me deu o seu post tomou outra forma. Imagino que levou algum
tempo para visualizar esta solução, observando as figuras e tudo mais. Essa
utilização dos sinais de (-) e (+) foi brilhante. Agora vejo a seu emprego.
Invenção ou reinvenção... não importa. O mais importante foi todo o seu
empenho no desenvolvimento. Minha sugestão é incrementar seu post com
explicações deste tipo, que darão um complemento muitíssimo significativo.

Obrigado novamente. Um forte abraço, tudo de bom para você e sua família.
Tenha um ótimo fim de semana!

Kleber


--------------------------------------------------

From: "Francisco Valdir" 

Sent: Friday, May 20, 2011 4:47 PM

To: "kleber kilhian" 

Subject: Respondendo II...


Desejo a todos, bons trabalhos e que tenham sucessos! Mais uma vez... o meu, muito obrigado! Até breve!
Atenciosamente...
Francisco Valdir de Lima.
*********************************************************************************



Artigos Relacionados

6 comentários:

Rafael Santos disse...

TENTEI FICAR EM FÉRIAS ABSOLUTO, MAS QUANDO VI ESSA POSTAGEM FINGI UM POUCO PRA MIM MESMO DE QUE ESSA SEMANA DE PROVAS SERÁ SUPER TRANQUILA E AINDA TEREI TEMPO SUFICIENTE PARA PARABENIZAR O BLOG MATEMÁGICAS PELA + DE 10000 VISITAS. PARABÉNS!!!!!!!! E AVANTE E DORAVANTE IREMOS CAMINHANDO POR ESSA MARAVILHOSA CIÊNCIA.!!!!

31 de maio de 2011 20:50
Francisco Valdir disse...

Olá, Rafael!
Obrigado, amigo e parceiro! São pessoas assim como você que fazem a diferença entre: ser somente solidário e ser atuante também!
A natureza é sábia e para uma boa atuação e realização das suas obras, costuma exercer forças polares, duais... como se seguisse ao ditame popular... "um é pouco, dois é bom e três é demais", o que eu não concordo no todo, pois para mim, sim... o um é pouco, o dois é o mínimo com que devemos atuar e três ou mais... nunca é demais para se alcançar e/ou vencer os objetivos de uma comunidade! Portanto, é claro que estaremos juntando as nossas forças, nessa luta de exorcizar os demônios da incompreensão, do medo de se lidar com as ciências, dos "pulos de gato" e de fazer da Matemática o cataliza-dor mais atuante, o que naturalmente ela já é, para o progresso do nosso Brasil e claro... de toda a humanidade!
Um abraço!!!!!

1 de junho de 2011 04:23
Jairo Grossi disse...

Fico feliz em ver como o seu blog se desenvolveu e melhorou. Gostaria de estar com este mesmo pique seu para postar sempre algo interessante, mas acho que estou passando por uma crise de
inspiração.
Eu que conheci seu antigo blog, e agora vejo este bombando de visitas e com um visual perfeito, só devo mesmo parabenizá-lo por tanta dedicação em prol da matemática.
Força!

2 de junho de 2011 09:38
Francisco Valdir disse...

Olá, amigo e professor Jairo!
Sinto-me honrado com a sua visita e também, com tantos elogios pelo meu blog, meu trabalho e incentivando-me em prosseguir!
Jairo, parceiro,,, que a força lhe toque tbm! Venha para a UBM e nós lhe inspiraremos a voltar a postar aqueles artigos tão interessantes e importantes, como vc é capaz de fazer! Obrigado por tudo, tenha fé na sua força e na sua inteligência, retorne e... avante!!!!!
Um abraço!!!!!

2 de junho de 2011 11:58
Kleber Kilhian disse...

Olá Valdir,
Realmente acho que foi ótimo expor sua idéia sobre o que tínhamos conversado sobre este tema. Muito bom.

Como nosso colega Jairo comentou acima, o blog já perdeu a cara de joelho e já caminha com suas próprias pernas.

Só tenho elogios a fazer e agradecer seus comentários.

Um abraço, ótimo fim de semana, paz e muita saúde mental para continuar seu ótimo trabalho!

3 de junho de 2011 04:28
Francisco Valdir disse...

Olá, Kleber!
Que bom que você aprovou! Muito obrigado!
Sei que ainda tenho muito o que aprender, mas, tendo os mestres como você, o Paulo, o Jairo e mais outros colegas e leitores a me apoiarem e ajudarem... é claro que vencerei!
Tenha tbm um ótimo final de semana, muita saúde e paz!
Um abraço!!!!!

3 de junho de 2011 05:07

Postar um comentário